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 A B S T R A C T

Pedestrian motion, driven by continuous interactions that govern individual navigation and 
collective behavior, is crucial for understanding and managing complex crowd dynamics in 
urban public spaces. However, most existing studies treat pedestrians as isolated individuals, 
overlooking how subgroup organization affects collision avoidance and interaction laws. To 
address this, we develop a subgroup-aware framework to capture the most imminent subgroup-
involved encounter by minimizing pairwise Time-To-Collision (TTC) within subgroups, thereby 
filtering redundant interactions and prioritizing behavioral realism. This data-driven analysis, 
applied to five public pedestrian datasets, examines the pair distribution function and inter-
action energy, showing that subgroup consideration yields a systematically smaller power-law 
exponent than the independent-individual assumption, revealing a weaker but more focused 
interaction decay. Moreover, the scaling exponent increases with subgroup size, indicating 
amplified repulsive forces and sharper avoidance maneuvers when facing larger subgroups. As 
an empirical feature-discovery study, these findings provide a more realistic and behaviorally 
grounded basis for modeling pedestrian dynamics, offering valuable implications for crowd 
simulation, public-space design, and autonomous systems.

1. Introduction

Pedestrian motion in public spaces is shaped by a continuous process of perceiving, anticipating, and responding to the 
movements of other individuals [1,2]. Whether on sidewalks, in transit stations, or across open plazas, these ubiquitous interactions 
determine not only how individuals navigate and move [3] but also how collective patterns such as lane formation [4], stripe 
formation [5], and stop-and-go waves [6] emerge. Therefore, understanding the mechanisms by which pedestrians adjust their 
trajectories in relation to neighbors is fundamental for explaining real-world movement behavior [7] and for developing reliable 
models of human movement [8]. These mechanisms lie at the core of a wide range of applications, including anomaly detection [9], 
crowd management [10], and autonomous navigation [11] in urban environments.

Nevertheless, translating empirical observations of pedestrian interactions into quantitative mathematical models inevitably 
requires simplifying assumptions. Most existing human motion models, whether data-driven laws [12] or force-based formula-
tions [6,13], are implicitly built on the assumption that interactions occur between isolated individuals. In practice, however, a 
substantial fraction of pedestrians move as socially coordinated subgroups, such as friends, families, or colleagues, whose motion 
is goal-driven and exhibits shared intentions [14]. When subgroups are treated as independent individuals, interaction strength, 
perceived collision risk, and avoidance responses may be systematically misestimated. For instance, an oncoming pedestrian typically 
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responds differently to a compact dyad than to two uncorrelated pedestrians, even if their spatial configuration appears similar [15]. 
Consequently, interaction laws summarized at the individual level [16] tend to fail to generalize to socially structured groups, 
limiting their descriptive power and predictive accuracy. To address this limitation, explicitly incorporating pedestrian subgroups 
into the quantification of avoidance behavior enables a more realistic characterization of pedestrian interactions, and provides 
empirical insights that can improve the calibration and validation of both data-driven and force-based models.

In this paper, we develop a subgroup-aware framework for characterizing pedestrian avoidance behavior in natural environments, 
positioned as an empirical data-analysis study focused on discovering key influences of subgroup-modulated dynamics. Specifically, 
pedestrian subgroups are first identified from public pedestrian datasets using a previously proposed network-based approach. Based 
on the identified results, an effective Time-To-Collision (TTC) metric is introduced for extending traditional pairwise interaction 
measurements, which can capture the most imminent encounter involving subgroups. Using this formulation, we systematically 
analyze the statistical properties of pedestrian interactions, including pair distribution function and interaction energy, revealing a 
remarkable difference in the scaling exponent when subgroups are taken into account. We further examine how subgroup size affects 
these interaction patterns, providing a hierarchical perspective that accommodates both isolated pedestrians and multi-member 
subgroups. This work integrates empirical data analysis with a generalized interaction law, aiming to advance the understanding 
of pedestrian dynamics in complex social contexts and to provide a foundation for more accurate crowd modeling. It should be 
emphasized that the interaction energy and the derived repulsive force are data-driven and statistical constructs that characterize 
the avoidance behavior of self-propelled pedestrians, rather than real physical energies or forces in the mechanical sense.

This paper is organized as follows. Section 2 reviews related work in this research field. Section 3 describes pedestrian trajectory 
datasets and subgroup identification results. In Section 4, the statistical quantification of pedestrian interactions is presented. 
Section 5 reveals the power law of subgroup-level interactions. Finally, the main conclusions, potential applications, and future 
directions are discussed in Section 6.

2. Related work

This section reviews the state of the art in pedestrian dynamics to contextualize our contributions. We first examine existing 
studies of pedestrian avoidance behavior, and then discuss a series of empirical findings regarding pedestrian subgroups. This 
synthesis highlights the critical gap in quantitative interaction models that explicitly account for social grouping, motivating the 
subgroup-aware framework proposed in this study.

2.1. Avoidance behavior in pedestrian interactions

A central question in the study of pedestrian behavior is how individuals avoid collisions with others when navigating shared 
spaces, and extensive efforts have been devoted to understanding the interaction mechanisms through various methods [17,18].

With regard to field observations, Karamouzas et al. [16] analyzed public pedestrian datasets and found that pedestrian 
interactions follow a universal power law governed by the anticipated TTC rather than spatial distance. Corbetta et al. [19] leveraged 
millions of real-life trajectories to study the avoidance interactions occurring in diluted conditions, constructing a Langevin-based 
model of binary avoidance in terms of both long-range (sight-based) and short-range (hard-contact avoidance) forces. In terms 
of controlled experiments, Murakami et al. [4] adopted a crowd experiment of lane formation and demonstrated how distracted 
pedestrians disrupt anticipatory interactions and delay the onset of collective pattern formation. In a subsequent experiment [20], 
these authors experimentally intervened pairs of pedestrians performing simple avoidance tasks and revealed that spontaneous 
coordination critically relies on mutual anticipation, rather than mutual gaze. Bacik et al. [21] combined theoretical analysis 
and controlled experiments to reveal that the order–disorder transition can be predicted by analyzing the geometry of pairwise 
interactions between pedestrians avoiding collision. For virtual reality (VR) technology, Kwon et al. [22] used an immersive VR 
road-crossing framework to examine the interactions between perceived crash risk and crossing behavior in a road with changes 
in environmental attributes. Liu et al. [23] utilized a VR platform to explore how pedestrians initiate detouring, select avoidance 
sides, and adjust lateral deviation when encountering a non-perceiving intruder.

2.2. Pedestrian subgroups in crowd dynamics

In recent years, an increasing number of studies have begun to recognize the pivotal role of pedestrian subgroups, owing to 
their ubiquity in real-world situations [24]. From the perspective of crowd dynamics, subgroups are typically defined as the set of 
pedestrians who move together with shared goals, social ties, and coordinated motion, and exhibit behavioral patterns that differ 
markedly from those of isolated individuals [14].

Empirical research has indicated several characteristic regularities associated with subgroups, such as subgroup size approxi-
mately following a (truncated) Poisson distribution [25], the decrease in average walking speed as subgroup size increases [24], 
and the transition of spatial configurations from horizontal to ‘‘V’’-like or ‘‘U’’-like structures as crowd density grows [26]. Turning 
to the avoidance behavior of mobile subgroups, such maneuvers can be interpreted as socially informed interactions with external 
individuals or subgroups. Bruneau et al. [27] conducted a VR-based user study to explore how real humans decide to go through or 
around subgroups, relevant results showed that the decision shift between these two choices is made according to some individual 
threshold. Gregorj et al. [28] utilized two pedestrian trajectory datasets to study the dynamics of collision avoidance between 
pedestrian subgroups (in particular dyads), confirming that the probability of passing through the subgroup is a decreasing function 
of interaction intensity and strength of social bonding. These authors [29] further investigated how dyads and singles navigate and 
avoid collisions in crowded environments, which revealed a systematic imbalance and significant effects of social interaction on 
avoidance behavior.
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Table 1
Details of five public pedestrian datasets.
 Dataset Year Location No. ped Flow type Density range  
 Seq_eth 2009 Zurich, Switzerland 360 bidirectional 0.007 ∼ 0.181 m−2 
 Seq_hotel 2009 Zurich, Switzerland 389 bidirectional 0.011 ∼ 0.192 m−2 
 Crowds_zara01 2007 Nicosia, Cyprus 148 bidirectional 0.012 ∼ 0.239 m−2 
 Crowds_zara02 2007 Nicosia, Cyprus 204 bidirectional 0.012 ∼ 0.227 m−2 
 Students003 2007 Tel Aviv, Israel 434 multidirectional 0.105 ∼ 0.410 m−2 

2.3. Research gaps

On the one hand, despite substantial progress in understanding pedestrian avoidance interactions at the individual level, existing 
research largely focuses on microscopic pairwise interactions or directly relates them to macroscopic collective patterns. From a 
mesoscopic perspective, the role of pedestrian subgroups as an intermediate organizational level remains insufficiently explored. 
This omission is nontrivial, as subgroups embody shared intentions, social bonds, and coordinated motion, which can fundamentally 
modulate how individuals perceive risk and execute avoidance maneuvers. On the other hand, while prior studies have documented 
characteristic properties of pedestrian subgroups, such as size distribution, walking speed, and spatial configuration, and have also 
examined their passing decisions or avoidance dynamics, a systematic quantification of avoidance interactions involving subgroups is 
still lacking. In particular, it remains unclear whether the governing principles identified for individual-level avoidance interactions 
can be extended to situations at the subgroup level, and how these principles are affected by subgroup size. As a result, filling this 
gap is essential for establishing a unified interaction framework that bridges individual-based avoidance laws and socially structured 
group motion, thereby providing a more realistic description of pedestrian dynamics in real-world environments. 

3. Data preparation and subgroup identification

This section details the empirical data and processing pipeline that ground our statistical analysis. First, we introduce five public 
pedestrian datasets and describe the associated data preparation steps. Second, a previously proposed network-based algorithm is 
employed to identify pedestrian subgroups. These procedures provide the essential basis for our subsequent analysis.

3.1. Pedestrian trajectory extraction

This study utilizes the BIWI [30] and UCY datasets [31], chosen for their widespread use in pedestrian behavior research and 
for providing a representative variety of outdoor scenarios [32]. The BIWI dataset includes Seq_eth and Seq_hotel datasets, collected 
from a bird’s-eye viewpoint at a frame rate of 2.5 FPS, capturing pedestrian movements near a university building and a bus station, 
respectively. The UCY dataset consists of Crowds_zara01, Crowds_zara02, and Students003 datasets, which were recorded at 25 FPS 
in open public spaces such as a shopping street and a university campus. Pedestrian trajectories in these sequences were manually 
or semi-automatically tracked and refined through post-processing to correct perspective distortion and reduce annotation errors. 
These datasets, summarized in Table  1, collectively provide a diverse representation of pedestrian motion patterns in natural outdoor 
environments, and differ in many aspects such as the number of pedestrians, density level, and flow type.

To ensure consistency across datasets and improve data quality, several preprocessing steps were applied to the extracted 
pedestrian trajectories. First, the trajectories from Seq_eth and Seq_hotel datasets, originally annotated at 2.5 FPS, were interpolated 
to achieve a unified frame rate of 25 FPS. This resampling ensured that the time interval between consecutive trajectory points can 
be standardized to 0.04 s, allowing for temporal consistency when combining all datasets and preventing potential biases caused by 
varying frame rates. Next, each trajectory was smoothed using a second-order low-pass Butterworth filter to suppress high-frequency 
noise and mitigate small oscillations due to tracking inaccuracies or frame-to-frame jitter. This filtering helps preserve the natural 
motion trends while eliminating fluctuations that do not reflect realistic pedestrian behavior. Finally, the instantaneous velocity of 
pedestrians was computed by a forward difference method based on consecutive position points. As shown in Fig.  1, the processed 
trajectories from all five datasets are visualized, serving as the data foundation for subsequent quantitative studies.

3.2. Pedestrian subgroup identification

In natural outdoor environments, pedestrians often move not as isolated individuals but as social subgroups, such as friends, 
families, or colleagues walking together. However, most previous studies merely focus on pairwise interactions between individuals 
and ignore the presence of subgroups that may significantly affect the underlying interaction laws. Therefore, we employ our 
previously proposed automatic method [33] to identify subgroups from video-based trajectory data. This approach integrates spatial 
proximity and temporal continuity to quantify the interaction intensity between pairs of pedestrians, where those who remain 
spatially close over a sustained period are assigned higher interaction intensities. From this, a time-dependent pedestrian flow 
network is constructed, with pedestrians represented as nodes and interaction intensities as weighted links. Potential subgroups are 
then identified as community structures in the network by applying an optimal threshold that maximizes the objective function of 
3 
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Fig. 1. Visualization of pedestrian trajectories in five public datasets. (a) Seq_eth. (b) Seq_hotel. (c) Crowds_zara01 and Crowds_zara02. (d) 
Students003. All trajectory coordinates in each scenario are translated to align the geometric center with the origin.

weighted partition density, which has been shown to achieve high identification accuracy on these five datasets [25,33]. To further 
improve accuracy, all automatically identified results were manually checked and calibrated to minimize detection errors.

To offer empirical support for the reliability of our detection results, Fig.  2 presents the quantitative characteristics of the 
identified pedestrian subgroups. Although slight variations exist across these five datasets due to differences in aspects such as 
scene configuration, crowd density, and social context, the proportion distribution typically decreases monotonically with increasing 
subgroup size in Fig.  2(a). Meanwhile, subgroups with more than four members are found to be extremely rare, which aligns well 
with previous empirical observations that subgroup sizes ranging from two to four are the most frequent in human crowds [25,26]. 
As a consequence, we focus on subgroups with sizes smaller than five. It can be observed from Fig.  2(b) that isolated individuals 
(note that they are treated as subgroups of size = 1) show higher average speeds compared to those walking in subgroups, whose 
average speeds tend to decrease as the size grows. This trend is consistent with the robust findings of subgroup walking speed [24], 
suggesting that larger subgroups move more slowly due to coordination and communication among members. Overall, these results 
demonstrate that the identified subgroups are reasonable and effective for our analysis of pedestrian interactions.

4. Statistical quantification of pedestrian interactions

In this section, we propose a modified TTC metric that specifically prioritizes the most imminent encounter involving subgroups, 
distinct from traditional pairwise interaction assumptions. Based on this metric, we derive two key statistical descriptors, pair 
distribution function and interaction energy, which allow us to quantitatively compare how the inclusion of subgroups alters the 
statistical quantification of pedestrian interactions.
4 
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Fig. 2. Quantitative characteristics of the identified pedestrian subgroups. (a) Proportion distribution as a function of subgroup size. (b) Box plot 
of average speed for different subgroup sizes.

4.1. Time-to-collision

In this study, TTC is defined as the duration for which two pedestrians continue moving at their current velocities before 
colliding [6,16,34], which provides a dynamic measure of how imminent a potential collision is. A smaller TTC reflects a more 
imminent interaction context, indicating a stronger propensity for collision-avoidance behavior. This parameter inherently integrates 
both spatial and kinematic information, as it depends simultaneously on the relative position and velocity of two pedestrians. 
Specifically, the relative distance between pedestrians 𝑖 and 𝑗 at time 𝑡 is 𝑑𝑖𝑗 (𝑡) = ‖

‖

‖

𝑝𝑖(𝑡) − 𝑝𝑗 (𝑡)
‖

‖

‖

, where 𝑝𝑖(𝑡) and 𝑝𝑗 (𝑡) are their 
positions. A potential collision is assumed to occur after a time period 𝜏𝑖𝑗 if the relative distance 𝑑𝑖𝑗 (𝑡+ 𝜏𝑖𝑗 ) =

‖

‖
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‖

‖equals the sum of their radii 𝑟𝑖 and 𝑟𝑗 (i.e., the two pedestrians touch each other). Note that the pedestrian radius is set to 0.1 m, 
following the same assumption as in Ref. [16]. The TTC 𝜏𝑖𝑗 is found by solving the following equation: 

‖
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‖
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= 𝑟𝑖 + 𝑟𝑗 (1)

where the new position of pedestrian 𝑖 is calculated based on its current velocity 𝑣𝑖(𝑡): 
𝑝𝑖
(

𝑡 + 𝜏𝑖𝑗
)

= 𝑝𝑖 (𝑡) + 𝑣𝑖 (𝑡) ⋅ 𝜏𝑖𝑗 (2)

Eq.  (1) can be written as the quadratic equation: 
𝐴𝜏2𝑖𝑗 + 𝐵𝜏𝑖𝑗 + 𝐶 = 0 (3)

with parameters: 
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(4)

Here, 𝜏𝑖𝑗 is determined by the smallest positive root of the quadratic equation.
In the previous study, pedestrian interactions in human crowds were typically considered based on the hypothesis that each 

individual interacts independently with other individuals and neglects the presence of subgroups [16]. From this, this pairwise 
computational approach may produce multiple collision times when the encounter involves subgroups. Mathematically, let 𝑀 and 
𝑁 be the nonempty sets of two subgroup members, the set of all admissible pairwise collision times between members 𝑖 ∈ 𝑀 and 
𝑗 ∈ 𝑁 is defined as follows: 

 𝑛𝑒𝑔
𝑀,𝑁 =

{

𝜏𝑖𝑗
|

|

|

𝑖 ∈ 𝑀, 𝑗 ∈ 𝑁, 𝜏𝑖𝑗 < ∞
}

(5)

However, retaining all collision times in  𝑛𝑒𝑔
𝑀,𝑁  as independent interactions is not physically or behaviorally reasonable if subgroups 

are involved. In such cases, multiple members within a subgroup are sufficiently close in space and may generate highly correlated 
potential collisions with another pedestrian or subgroup. The corresponding motion state would change if one reacts to the 
most imminent collision, rendering the remaining predicted collisions invalid. From a cognitive insight, pedestrians also respond 
primarily to the most urgent threat, rather than processing all pairwise interactions simultaneously. The effective collision time 
𝜏𝑐𝑜𝑛𝑀,𝑁  considering subgroups is therefore defined as the minimum value of the set  𝑛𝑒𝑔

𝑀,𝑁 : 

𝜏𝑐𝑜𝑛 = min
(

 𝑛𝑒𝑔
)

= min
{

𝜏 |

| 𝑖 ∈ 𝑀, 𝑗 ∈ 𝑁, 𝜏 < ∞
}

(6)
𝑀,𝑁 𝑀,𝑁 𝑖𝑗
|

𝑖𝑗
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Fig. 3. Illustration of the encounter involving subgroups. A single pedestrian 𝑖 (in red) interacts with a subgroup of members 𝑗, 𝑘, 𝑙 (in blue). 
Each pairwise interaction yields a corresponding TTC if all pedestrians continue walking at their current velocities, denoted as 𝜏𝑖𝑗 , 𝜏𝑖𝑘, and 𝜏𝑖𝑙. 
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

This definition captures the earliest and thus most influential encounter, ensuring a more realistic representation of subgroup-related 
interactions. For further aspects of the above definitions see the example illustration in Fig.  3.

4.2. Pair distribution function

In condensed matter physics [35], the pair distribution function, 𝑔(𝑥), characterizes the degree to which different configurations 
are made unlikely by mutual interactions between particles. By analogy with pedestrian dynamics, this function is defined by: 

𝑔 (𝑥) = 𝑃 (𝑥)∕𝑃NI (𝑥) (7)

where 𝑃 (𝑥) is the observed probability density of two interacting pedestrians at a relative separation 𝑥, and 𝑃NI (𝑥) is the expected 
probability density of two non-interacting pedestrians in an equivalent system. Given that non-interacting scenarios cannot be 
observed directly, the distribution 𝑃NI (𝑥) is approximated by constructing a time-scrambled dataset in which the time information 
in trajectory points is randomly permuted across individuals. This time-scrambled dataset keeps spatially-averaged density and 
time-averaged flow the same as in the original dataset, while ensuring that pedestrian positions at any given time are uncorrelated 
(i.e., pedestrians are not interacting).

Based on this, 𝑔 (𝜏) as a function of TTC 𝜏 has been found to collapse onto each other across different approaching rates and 
relative orientations, which confirms that 𝜏 is a sufficient descriptor of pedestrian interactions. Notably, the magnitude of 𝑔 (𝜏)
reflects how pedestrian interactions influence the likelihood of pairwise configurations: 𝑔 (𝜏) < 1 indicates that configurations with 
a given collision time are suppressed due to avoidance behavior, while 𝑔 (𝜏) > 1 corresponds to configurations that are more likely 
than expected, often arising from coordinated or following motion, and 𝑔 (𝜏) = 1 represents an uncorrelated state where pedestrians 
move independently without systematic interaction effects. These classifications provide a systematic framework for characterizing 
the effects of pedestrian interactions on the structure of pairwise configurations. In the following analysis, we are particularly 
interested in examining how the incorporation of subgroups alters the statistical patterns of pedestrian interactions.

The pair distribution functions 𝑔 (𝜏) obtained by neglecting and considering subgroup-level interactions are compared in Fig.  4(a). 
Both curves show a characteristic tendency: 𝑔 (𝜏) increases sharply from near-zero at small interaction times (𝜏 < 2 s), indicating 
that imminent collision configurations are strongly suppressed due to mutual avoidance. In the intermediate range (𝜏 = 2 ∼ 4 s), 
𝑔 (𝜏) gradually reaches a plateau, which reflects a stable interaction horizon where pedestrians continuously adjust their motion 
to maintain safe temporal margins. For long time scales 𝜏 > 4 s, fluctuations around 𝑔 (𝜏) = 1 suggest that the interaction effect 
diminishes and pair configurations become statistically indistinguishable from random encounters. However, when subgroup-level 
interactions are considered, the statistical measure of 𝑔 (𝜏) slightly decreases compared to the case of neglecting subgroups. This 
is because redundant pairwise interactions are filtered out, leaving only the most imminent encounters. This reduction does not 
imply weaker responsiveness but reflects organized and prioritized interactions with subgroup members, where individuals focus 
on the primary collision threat instead of responding to all potential interactions. Therefore, the difference between the two curves 
indicates that treating all pairwise links equally for subgroups tends to overestimate the apparent frequency of pairwise interactions.

4.3. Interaction energy

To gain a more physically interpretable description of the underlying interactions, it is critical to introduce the concept of energy 
to represent how strongly certain configurations are suppressed or favored. Assuming that the system is approximately in a statistical 
equilibrium state (i.e., macroscopic properties such as average pedestrian density and mean walking speed are almost time-invariant), 
6 
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Fig. 4. Quantitative comparison of interaction statistics between the two cases of neglecting and considering subgroups. (a) Pair distribution 
function 𝑔 (𝜏) as a function of TTC 𝜏. (b) Interaction energy 𝐸 (𝜏) as a function of TTC 𝜏.

the pair distribution function 𝑔 (𝜏) can be related to the interaction energy 𝐸 (𝜏) through a Boltzmann-like relation. This facilitates 
the physical interpretation of avoidance behavior as a repulsive potential with a characteristic decay law, analogous to particle 
interactions in statistical mechanics, thereby quantifying how imminent collisions incur energetic costs due to mutual repulsion. 
Specifically, the probability of observing a pair of pedestrians with a given TTC 𝜏 is given by: 

𝑔 (𝜏) ∝ exp
[

−𝐸 (𝜏) ∕𝐸0
]

(8)

where 𝐸0 is a characteristic energy scale depending on the scene conditions. This expression implies that configurations associated 
with stronger interactions (i.e., smaller 𝜏) occur less frequently due to the effective repulsion between pedestrians. By rearranging 
this relation, the interaction energy can be expressed as follows: 

𝐸 (𝜏) ∝ ln
[

1∕𝑔 (𝜏)
]

(9)

From this, the interaction energy 𝐸 (𝜏) provides a quantitative measure of how interaction strength varies with the imminence of 
collision.

Fig.  4(b) illustrates how the interaction energy 𝐸 (𝜏) varies with the TTC 𝜏. Regardless of whether subgroups are considered, 𝐸 (𝜏)
exhibits a consistent pattern: it starts from large values at small 𝜏, decreases rapidly with increasing 𝜏, eventually approaches zero and 
remains relatively stable at large 𝜏. This tendency indicates that configurations with small 𝜏 (i.e., imminent collisions) are statistically 
suppressed, as pedestrians actively avoid such situations, thereby leading to high energetic costs. In contrast, configurations with 
large 𝜏 (i.e., distant or non-interacting pairs) occur more frequently than expected, reflecting low interaction energy states where 
mutual influence is negligible and pedestrian motion is largely independent. Interestingly, when subgroups are taken into account, 
the overall trend of 𝐸 (𝜏) remains almost consistent but the curve shifts slightly upward. This enhancement arises naturally from the 
inverse relation between 𝐸 (𝜏) and 𝑔 (𝜏), but it also carries a clear physical interpretation. By eliminating redundant pairwise links, 
subgroup-level interactions effectively concentrate efforts on the most relevant encounters, resulting in less but stronger interaction 
responses. In energetic terms, this means a higher interaction strength toward imminent threats, which translates into elevated 𝐸 (𝜏)
despite an overall reduction in interaction frequency. As a result, this reveals a more selective but energetically focused interaction 
strategy with respect to subgroups.

5. Power law of subgroup-level interactions

This section presents the core empirical analysis of the power law of pedestrian interactions. We first compare how the interaction 
energy decays with TTC in a power-law form under individual-based versus subgroup-based assumptions, and then examine how 
subgroup size influences the decay exponent and overall interaction law.

5.1. Power-law fit of interaction energy

In this part, we are interested in exploring the interaction law of pedestrian motion. The visual inspection of interaction energy 
curves in Fig.  4(b) reflects a systematic decay pattern: 𝐸 (𝜏) attains large values at very small 𝜏 (plausibly due to finite human reaction 
limits), then falls off significantly over an intermediate range, and finally levels off near zero at large 𝜏 (interaction truncation caused 
by excessive collision times). This suggests that 𝐸 (𝜏) is only well defined over a finite interval of 𝜏, within which the measured 
energy varies smoothly from the region of large-range fluctuations to the region where it becomes indistinguishable from noise. To 
7 
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determine this valid interval, we adopt the quantitative clustering to divide the values of 𝜏 into uniform intervals (bins of 0.2 s). 
The lower boundary is defined as the point 𝜏min where the interaction energy first shows a significant decline between successive 
bins (we use 𝑡-test here), reflecting the onset of actual interaction effects beyond strong energy fluctuations. The upper boundary is 
determined as the point 𝜏max where 𝐸(𝜏) approaches a steady level and exhibits no noticeable variation across successive bins (we 
use ANOVA test here), indicating that interactions at longer timescales contribute negligibly to the measured energy.

Within the identified interval [𝜏min, 𝜏max
]

, the interaction energy 𝐸(𝜏) exhibits a monotonic decay, implying a potential scaling 
relation. To quantitatively capture this scaling law, we perform a power-law fit of interaction energy as follows: 

𝐸 (𝜏) ∝ 𝜏−𝛼 (10)

where 𝛼 quantifies the rate of decay for interaction energy. The fitting is carried out in logarithmic space using a least-squares 
regression on log𝐸(𝜏) versus log 𝜏, which linearizes the relationship and allows for a robust estimation of the exponent. To mitigate 
the influence of statistical outliers and local fluctuations, the bisquare weighting is applied to ensure that the power-law fit reflects 
the central trend of the observed data. The above procedures give a complete derivation process of the interaction law, which will 
be compared across different conditions in the following subsections.

5.2. Effect of subgroup consideration on interaction law

We now compare the interaction law under two conditions: neglecting and considering pedestrian subgroups. The first case 
corresponds to the previous study [16], where all pedestrians are treated as independent individuals, each assumed to interact 
pairwise with others regardless of any subgroup affiliation. The second case explicitly incorporates subgroup-level interactions, 
in which the effective interaction is governed by the earliest (most imminent) collision with subgroup members. Following the 
approach described in the previous subsection, the well-defined interval [𝜏min, 𝜏max

] is determined separately for each case. For the 
case of neglecting subgroups, the lower boundary is 𝜏min = 0.6 s [𝑡(18) = 4.574, 𝑃 < 0.001], and the upper boundary is 𝜏max = 2.6 s
[𝐹 (2, 27) = 1.741, 𝑃 = 0.194]. For the case of considering subgroups, we have the lower boundary 𝜏min = 0.6 s [𝑡(18) = 5.003, 
𝑃 < 0.001] and the upper boundary 𝜏max = 2.4 s [𝐹 (2, 27) = 0.305, 𝑃 = 0.740]. In both cases, as shown in Fig.  5(a)–(b), 𝐸(𝜏) varies 
smoothly within the identified interval [𝜏min, 𝜏max

]

, without the strong initial fluctuations or the nearly constant tail observed in the 
raw data. This determines a reliable region over which the interaction energy remains physically meaningful for scaling analysis.

Here, the interaction energy 𝐸(𝜏) is examined in logarithmic space, we conduct a linear fit with bisquare weighting to quantify 
the scaling law. The log–log plots in Fig.  5(c)–(d) reveal that 𝐸(𝜏) follows a power-law decay with increasing 𝜏 over the well-defined 
interval, which confirms the same scale-invariant nature of pedestrian interactions under both assumptions. Notably, the exponent 
𝛼 differs between these two cases: 𝛼 = 1.932 ± 0.083 for the case when subgroups are neglected, aligning well with the previous 
finding that 𝐸 shows a quadratic falloff as a function of 𝜏. However, the case of considering subgroups yields a smaller exponent of 
𝛼 = 1.693 ± 0.105, indicating a slower decay of interaction energy. The difference arises because retaining only the most imminent 
interaction weakens the short time-scale concentration of energy, resulting in a more gradual overall decay and thus a smaller 
power-law exponent. This highlights that subgroup-related interactions reflect a less rapidly dissipating energy response pattern 
compared to treating all individuals independently.

5.3. Effect of subgroup size on interaction law

For the case of considering subgroups, the influence of subgroup size on the power law governing pedestrian interactions is 
further investigated. We focus on isolated individuals and the most frequently observed subgroup sizes (i.e., dyads, triads, and 
tetrads) in human crowds, and define the interactions associated with subgroup size 𝑁𝑠 as those between a subgroup of size 𝑁𝑠 and 
another subgroup with size ≤ 𝑁𝑠. This definition ensures that the effective interaction for subgroup size 𝑁𝑠 is evaluated with respect 
to all relevant encounter partners, thereby preserving a consistent hierarchical structure in the scope of interactions across subgroup 
sizes. Following the same procedures as before, the linear fit of interaction energy 𝐸(𝜏) for each subgroup size is performed over 
the well-defined interval. Fig.  6 denotes that all four cases consistently follow a power-law decay regardless of subgroup size. This 
demonstrates that the scale-invariant structure of pedestrian interactions remains robust even when subgroup heterogeneity is taken 
into account.

In particular, the fitted power-law exponent 𝛼 increases systematically with subgroup size: isolated individuals (𝑁𝑠 = 1) exhibit 
the smallest exponent, whereas dyads (𝑁𝑠 = 2), triads (𝑁𝑠 = 3), and tetrads (𝑁𝑠 = 4) show progressively larger exponents. 
This tendency reflects that interactions involving larger subgroups display a steeper decay of 𝐸(𝜏) with increasing 𝜏. A plausible 
explanation stems from the definition of avoidance-based interaction. Pedestrians typically experience a greater sense of pressure 
when encountering larger subgroups, which amplifies their short-time collision sensitivity and increases the energetic cost of evasive 
maneuvers. In other words, larger subgroup contexts will intensify immediate avoidance effort, producing the observed increase 
in the fitted exponent. As a consequence, the exponent 𝛼 reflects how subgroup size shapes the scaling behavior of pedestrian 
interactions, highlighting the critical role of subgroup organization in governing the emergent interaction law in human crowds.

Although subgroup size primarily modifies the short-time scaling through changes in the exponent 𝛼, the decay of interactions 
at larger 𝜏 is governed by a characteristic cutoff 𝜏0 that reflects the limited anticipation range of pedestrians. The cutoff times 
across all subgroup conditions consistently cluster around the observed value 𝜏0 ≈ 3 s (in line with the previous report indicating a 
2 ∼ 4 s time window [36]), allowing us to identify a lower bound estimate of the intrinsic interaction horizon. Therefore, the final 
8 
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Fig. 5. Comparison of the power law of pedestrian interactions under different assumptions. (a)–(b) Interaction energy 𝐸(𝜏) as a function of TTC 
𝜏 for the two cases of neglecting and considering subgroups. The solid line and colored region represent the fitting curve and 95% confidence 
interval, respectively. (c)–(d) Power-law relationship between interaction energy 𝐸(𝜏) and TTC 𝜏 for the two cases of neglecting and considering 
subgroups. The colored circles and solid line denote the real data and fitting curve in logarithmic space, respectively. Note that the data are 
normalized so that 𝐸(1) = 1.

mathematical form of the interaction energy exhibits a power-law dependence for short avoidance times with a sharp truncation 
beyond the interaction horizon: 

𝐸 (𝜏) = 𝑘
𝜏𝛼

exp
(

−𝜏∕𝜏0
)

(11)

Here, the constant 𝑘 sets the units for energy. With the energy function specified, its gradient directly −∇𝑝𝑖𝑗𝐸 (𝜏) yields the interaction 
force acting on pedestrians: 
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(12)

It can be seen from Fig.  7(a)–(b) that higher interaction energy associated with larger subgroups naturally leads to stronger 
psychological repulsive forces during encounters. Such amplified forces manifest as sharper turns and more abrupt avoidance, which 
is consistent with empirical observations that pedestrians react more vigorously to larger oncoming groups due to increased collision 
risk and spatial pressure [28].

6. Conclusions

In this work, we revisit the fundamental interaction law governing pedestrian motion by explicitly incorporating the role of 
subgroups in human crowds. Using trajectory data in five public pedestrian datasets, pedestrian subgroups are identified through 
9 
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Fig. 6. Comparison of the power law of pedestrian interactions under different subgroup sizes. (a) Subgroup size = 1. (b) Subgroup size = 2. 
(c) Subgroup size = 3. (d) Subgroup size = 4. The colored circles and solid line denote the real data and fitting curve in logarithmic space, 
respectively. Note that the data are normalized so that 𝐸(1) = 1.

Fig. 7. Interaction energy and force for different subgroup sizes. (a) Interaction energy 𝐸(𝜏) as a function of TTC 𝜏. (b) Interaction force |𝐹𝑖𝑗 |

as a function of TTC 𝜏. The scalar is derived under the simplifying assumption that 𝑝𝑖𝑗 and 𝑣𝑖𝑗 are collinear and oppositely directed, with the 
initial separation normalized to unit distance.
10 
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a previously proposed network-based method. Building on this, we improve the classic pairwise interaction framework by defining 
an effective TTC that reflects the most imminent encounter involving subgroups. This subgroup-aware formulation enables a 
reassessment of the pair distribution function and the associated interaction energy. Our results show that although the overall 
trend of pedestrian interactions remains robust, considering subgroups reduces redundant pairwise links and yields a more selective 
and energetically focused interaction pattern. The interaction energy retains a clear power-law decay, but with a smaller exponent 
compared to the case of neglecting subgroups. Moreover, the increasing scaling exponent for larger subgroups amplifies the effective 
repulsive force, which may lead to sharper turning maneuvers and stronger avoidance actions during imminent encounters.

These findings link subgroup structure directly to measurable changes in the pedestrian interaction law, particularly the modified 
scaling exponent and the size-dependent repulsive interactions. This provides a behaviorally grounded basis for microscopic crowd 
simulation models [37], where explicitly accounting for the presence and size of subgroups helps avoid inaccurate estimation of 
interaction strength and better captures sharp avoidance maneuvers during imminent encounters. It can also inform the design and 
safety evaluation of pedestrian-oriented public spaces (e.g., transport hubs, urban walkways, and large-scale event venues) [38], 
because the effects of subgroups on interaction behavior and pedestrian flow can be quantified, which enables more realistic 
predictions and targeted interventions to reduce congestion and enhance safety. In addition, the refined interaction descriptors 
support downstream tasks (e.g., trajectory forecasting, human–robot navigation, and autonomous-vehicle planning) in computer 
vision and robotics [39,40], where anticipating subgroup-driven coordinated motion is very critical for safe and socially compliant 
decision-making.

Despite these advances, several limitations should be indicated as well. First, the subgroup identification relies on trajectory-based 
cues rather than richer multimodal information such as gaze direction or social context [41], which may overlook subtle coordination 
and avoidance behaviors in complex social settings. Second, the analysis focuses on encounters between pairs of entities, whereas 
higher-order interactions [42] in human crowds may involve more intricate decision-makings and movement behaviors. Third, while 
the interaction energy provides a physically interpretable description of pedestrian avoidance, it does not correspond to actual 
physical mechanisms between self-propelled pedestrians, who act based on perception and anticipatory decisions. Nevertheless, 
our framework demonstrates that acknowledging subgroup structure is essential for uncovering the true power law of pedestrian 
interactions. Future work may incorporate additional behavioral signals for more robust subgroup detection, extend the interaction 
law to multi-party encounters, and explore how environmental and cultural factors affect the interaction behavior. In conclusion, 
these directions offer a pathway toward a more comprehensive theory of pedestrian interactions.
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